OPTIONAL ANNUAL REPORT TEMPLATE

Drinking-Water System Number:	220000077
Drinking-Water System Name:	Harriston Drinking Water System
Drinking-Water System Owner:	Town of Minto
Drinking-Water System Category:	Large Municipal Residential
Period being reported:	January 1, 2016 to December 31, 2016

Complete if your Category is Large Municipal Residential or Small Municipal Residential	Complete for all other Categories.
Does your Drinking-Water System serve more than 10,000 people? Yes [] No [$\sqrt{\ }$]	Number of Designated Facilities served: N/A
Is your annual report available to the public at no charge on a web site on the Internet? Yes $\lceil \sqrt{\ } \rceil$ No $\lceil \ \rceil$	Did you provide a copy of your annual report to all Designated Facilities you serve? Yes [] No []
Location where Summary Report required under 0. Reg. 170/03 Schedule 22 will be available for inspection.	Number of Interested Authorities you report to: N/A
Town of Minto 5941 Hwy #89 R.R. #1 Harriston, ON NOG 1ZO	Did you provide a copy of your annual report to all Interested Authorities you report to for each Designated Facility? Yes[] No[]

Note: For the following tables below, additional rows or columns may be added or an appendix may be attached to the report

Did you provide a copy of your annual report to all Drinking-Water System owners that are connected to you and to whom you provide all of its drinking water? Yes $[\]$ No $[\]$

Indicate how you notified system users that your annual report is available, and is free of charge.

[√] Public access/notice via the web	Town of Minto Website
[] Public access/notice via Government Offi	ce
[√] Public access/notice via a newspaper	Advertisements in Local Newspapers
[] Public access/notice via Public Request	
[] Public access/notice via a Public Library	
[$\sqrt{\ }$] Public access/notice via other method	<u>Tax Letter</u>

Describe your Drinking-Water System

Harriston is serviced by a waterworks that consists of: three drilled bedrock wells, three pumphouses, an elevated 1915 m³ steel storage tank and a distribution network of watermains, ranging in diameter from 100 mm to 250mm. In the event of a power outage, pump #1 & #3 is equipped with automatic back-up power supply. Well #2 has the capacity of connecting to a portable generator.

The bedrock wells are equipped with submersible pumps. Water from Wells #1 and #3 discharge into pumphouse #3, and water from Well #2 discharges into pumphouse #2, respectively, for flow measurement and treatment. In the pumphouse, the raw water supply is injected with 12% sodium hypochlorite for disinfection and the chemical PW1680, for iron sequestering. The treated water leaves the pumphouse and enters an underground contact pipe and is discharged into the distribution system after adequate contact time is achieved.

The wells are controlled (start/stop) automatically based on elevated storage tank liquid levels and pressures in the distribution system. Each pumphouse is equipped with alarms for chlorination system failure (and corresponding lockout of well pumps), low water level and intrusion. Each wellhouse has a continuous monitoring analyzer for chlorine with lockouts and alarms.

SCADA provides continuous monitoring to this system.

List all water treatment chemicals used over this reporting period

- 12% Sodium Hypochlorite (disinfectant)
- PW1680 (sequestering agent)

Were any significant expenses incurred to?

- $[\sqrt{\ }]$ Install required equipment
- $[\sqrt{\ }]$ Repair required equipment
- [√] Replace required equipment

Please provide a brief description and a breakdown of monetary expenses incurred

To meet the requirements of O. Reg. 170/03, upgrades, installations and replacement of various system components have been completed. However, maintaining the system includes repair and replacement of individual components as required.

In 2016 \$211,750 was spent on the Elora Street, Arthur Street to William Street old watermain replacement and \$75,000 was spent on Well #2 upgrades to increase water quality.

Provide details on the notices submitted in accordance with subsection 18(1) of the Safe Drinking-Water Act or section 16-4 of Schedule 16 of O.Reg.170/03 and reported to Spills Action Centre

Incident Date	Parameter	Result	Unit of Measure	Corrective Action	Corrective Action Date
N/A	N/A	N/A	N/A	N/A	N/A

Microbiological testing done under the Schedule 10, 11 or 12 of Regulation 170/03, during this reporting period.

Type / Location of Sample		Number of Samples	Range of Total Coliform Results (min #)-(max #)	Range of E. Coli or Fecal Results (min #)-(max #)	Range of HPC (min #)-(max #)	Number of HPC Samples
	Well #1	52	0 - 0	0 - 0	N/A	N/A
Raw	Well #2	47	0 - 0	0 - 0	N/A	N/A
	Well #3	52	0 - 0	0 - 0	N/A	N/A
	Well #1	52	0 - 0	0 - 0	<10 - 30	52
Treated	Well #2	47	0 - 0	0 - 0	<10 - 120	47
	Well #3	52	0 - 0	0 - 0	<10 - > 2000	52
Distribution		156	0 - 0	0 - 0	<10 - TNTC	156

Operational testing done under Schedule 7, 8 or 9 of Regulation 170/03 during the period covered by this Annual Report.

Ope	rational Te	sting	Number of Grab Samples	Range of Results (min #) – (max #)
		Well #1	89	0.12 - 0.67
Turbidity	Raw	Well #2	80	0.11 - 0.77
		Well #3	94	0.12 - 0.68
		Well #1	363	0.79 - 1.69
Chlorine	Treated	Well #2	348	0.51 - 1.67
Cilionile		Well #3	366	0.79 - 1.72
	Distr	Distribution		0.39 - 1.39
Fluoride (If the DWS provides fluoridation)			N/A	N/A

NOTE: Record the unit of measure if it is **not** milligrams per litre.

Summary of additional testing and sampling carried out in accordance with the requirement of an approval, order or other legal instrument.

Date of legal instrument issued	Parameter	Date Sampled	Result	Unit of Measure
N/A	N/A	N/A	N/A	N/A

Harriston Well #1

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
Antimony	17/05/16	<0.6	ug/L	6
Arsenic	17/05/16	<1.0	ug/L	25
Barium	17/05/16	121	ug/L	1000
Boron	17/05/16	87	ug/L	5000
Cadmium	17/05/16	<0.1	ug/L	5
Chromium	17/05/16	<1.0	ug/L	50
*Lead			ug/L	100
Mercury	17/05/16	<0.1	ug/L	1
Selenium	17/05/16	<5.0	ug/L	10
Sodium	23/05/12	7.04	mg/L	20
Uranium	17/05/16	<5.0	ug/L	20

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
Fluoride	23/05/12	1.06	mg/L	1.5
	17/02/16	<0.01		
Nitrite	17/05/16	<0.01	mg/L	1
Nunce	10/08/16	<0.01	IIIg/ L	
	07/11/16	<0.01		
	17/02/16	<0.02		
Nitrate	17/05/16	<0.02	ma/l	10
Nitiate	10/08/16	<0.02	mg/L 10 	10
	07/11/16	<0.02		

^{*}only for drinking water systems testing *under* Schedule 15.2; this includes large municipal non-residential systems, small municipal non-residential systems, non-municipal seasonal residential systems, large non-municipal non-residential systems, and small non-municipal non-residential systems

Harriston Well #2

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
Antimony	31/05/16	<0.6	ug/L	6
Arsenic	31/05/16	<1.0	ug/L	25
Barium	31/05/16	52	ug/L	1000
Boron	31/05/16	62	ug/L	5000
Cadmium	31/05/16	<0.1	ug/L	5
Chromium	31/05/16	<1.0	ug/L	50
*Lead			ug/L	100
Mercury	31/05/16	<0.1	ug/L	1
Selenium	31/05/16	<5.0	ug/L	10
Sodium	23/05/12	11.4	mg/L	20
Uranium	31/05/16	<5.0	ug/L	20
Fluoride	23/05/12	0.62	mg/L	1.5
	17/02/16	<0.01		
Nitete -	31/05/16	<0.01	et /1	4
Nitrite	10/08/16	<0.01	mg/L	1
	07/11/16	<0.01		
	17/02/16	<0.02		
Nitrate	31/05/16	<0.02	mg/L	10
111.00	10/08/16	<0.02	6/ -	
	07/11/16	<0.02		

*only for drinking water systems testing under Schedule 15.2; this includes large municipal non-residential systems, small municipal non-residential systems, non-municipal seasonal residential systems, large non-municipal non-residential systems, and small non-municipal non-residential systems

Harriston Well #3

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
Antimony	17/05/16	<0.6	ug/L	6
Arsenic	17/05/16	<1.0	ug/L	25
Barium	17/05/16	130	ug/L	1000
Boron	17/05/16	75	ug/L	5000
Cadmium	17/05/16	<0.1	ug/L	5
Chromium	17/05/16	<1.0	ug/L	50
*Lead			ug/L	100
Mercury	17/05/16	<0.1	ug/L	1
Selenium	17/05/16	<5.0	ug/L	10
Sodium	23/05/12	8.95	mg/L	20
Uranium	17/05/16	<5.0	ug/L	20
Fluoride	23/05/12	0.98	mg/L	1.5
	17/02/16	<0.01		
Nitrite	17/05/16	<0.01	mg/L	1
	10/08/16	<0.01	6/ -	_
	07/11/16	<0.01		
	17/02/16	0.032		
Nitrate	17/05/16	0.029	mg/L	10
Mudle	10/08/16	0.020	IIIg/ L	10
	07/11/16	<0.020		

^{*}only for drinking water systems testing under Schedule 15.2; this includes large municipal non-residential systems, small municipal non-residential systems, non-municipal seasonal residential systems, large non-municipal non-residential systems, and small non-municipal non-residential systems.

Summary of lead testing under Schedule 15.1 during this reporting period

(applicable to the following drinking water systems; large municipal residential systems, small municipal residential systems, and non-municipal year-round residential systems)

Location Type	Number of Samples	Range of Lead Results (min#) – (max #)	Number of Exceedances
Plumbing	22	<1.0 – 3.1 ug/L	0
Distribution	4	<1.0 - <1.0 ug/L	N/A

^{*} These results are from samples taken in December 2013 -> April 2014 and June - October 2014.

No adverse results were identified.

Harriston Well #1

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
Alachlor	17/05/16	<0.1	ug/L	5
alpha-Chlordane	17/05/16	<0.1	ug/L	
Aroclor 1242	31/05/16	<0.02	ug/L	
Aroclor 1254	31/05/16	<0.02	ug/L	
Aroclor 1260	31/05/16	<0.02	ug/L	
Atrazine	17/05/16	<0.1	ug/L	
Atrazine Desethyl	17/05/16	<0.1	ug/L	
Atrazine & Metabolites	31/05/16	<0.2	ug/L	5
Azinphos-methyl	17/05/16	<0.1	ug/L	20
Benzene	17/05/16	<0.5	ug/L	5
Benzo(a)pyrene	17/05/16	<0.01	ug/L	0.01
Bromoxynil	17/05/16	<0.2	ug/L	5
Carbaryl	17/05/16	<0.2	ug/L	90
Carbofuran	17/05/16	<0.2	ug/L	90
Carbon Tetrachloride	17/05/16	<0.5	ug/L	5
Chlorpyrifos	17/05/16	<0.1	ug/L	90
Diazinon	17/05/16	<0.1	ug/L	20
Dicamba	17/05/16	<0.2	ug/L	120
1,2-Dichlorobenzene	17/05/16	<0.5	ug/L	200
1,4-Dichlorobenzene	17/05/16	<0.5	ug/L	5
1,2-Dichloroethane	17/05/16	<0.5	ug/L	5
1,1-Dichloroethylene (vinylidene chloride)	17/05/16	<0.5	ug/L	14
Dichloromethane	17/05/16	<5.0	ug/L	50

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
2-4 Dichlorophenol	17/05/16	<0.3	ug/L	900
2,4-Dichlorophenoxy acetic acid (2,4-D)	17/05/16	<0.2	ug/L	100
Diclofop-methyl	17/05/16	<0.2	ug/L	9
Dimethoate	17/05/16	<0.1	ug/L	20
Diquat	17/05/16	<1.0	ug/L	70
Diuron	17/05/16	<1.0	ug/L	150
gamma-Chlordane	17/05/16	<0.1	ug/L	
Glyphosate	17/05/16	<5.0	ug/L	280
Malathion	17/05/16	<0.1	ug/L	190
MCPA	17/05/16	<0.2	ug/L	
Metolachlor	17/05/16	<0.1	ug/L	50
Metribuzin	17/05/16	<0.1	ug/L	80
Monochlorobenzene	17/05/16	<0.5	ug/L	80
o,p-DDT	17/05/16	<0.1	ug/L	
Oxychlordane	17/05/16	<0.1	ug/L	
p,p-DDD	17/05/16	<0.1	ug/L	
p,p-DDE	17/05/16	<0.1	ug/L	
p,p-DDT	17/05/16	<0.1	ug/L	
Paraquat	17/05/16	<1.0	ug/L	10
Pentachlorophenol	17/05/16	<0.5	ug/L	60
Phorate	17/05/16	<0.1	ug/L	2
Picloram	17/05/16	<0.2	ug/L	190
Polychlorinated Biphenyls (PCB)	31/05/16	<0.035	ug/L	3
Prometryne	17/05/16	<0.1	ug/L	1
Simazine	17/05/16	<0.1	ug/L	10
Terbufos	17/05/16	<0.2	ug/L	1
Tetrachloroethylene (perchloroethylene)	17/05/16	<0.5	ug/L	30
2,3,4,6-Tetrachlorophenol	17/05/16	<0.5	ug/L	100
Triallate	31/05/16	<0.1	ug/L	230
Trichloroethylene	17/05/16	<0.5	ug/L	5
2,4,6-Trichlorophenol	17/05/16	<0.5	ug/L	5
Trifluralin	31/05/16	<0.1	ug/L	45
Vinyl Chloride	17/05/16	<0.2	ug/L	2

Harriston Well #2

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
Alachlor	31/05/16	<0.1	ug/L	5
alpha-Chlordane	31/05/16	<0.1	ug/L	
Aroclor 1242	31/05/16	<0.02	ug/L	
Aroclor 1254	31/05/16	<0.02	ug/L	

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
Aroclor 1260	31/05/16	<0.02	ug/L	
Atrazine	31/05/16	<0.1	ug/L	
Atrazine Desethyl	31/05/16	<0.1	ug/L	
Atrazine & Metabolites	31/05/16	<0.2	ug/L	5
Azinphos-methyl	31/05/16	<0.1	ug/L	20
Benzene	31/05/16	<0.5	ug/L	5
Benzo(a)pyrene	31/05/16	<0.01	ug/L	0.01
Bromoxynil	31/05/16	<0.2	ug/L	5
Carbaryl	31/05/16	<0.2	ug/L	90
Carbofuran	31/05/16	<0.2	ug/L	90
Carbon Tetrachloride	31/05/16	<0.5	ug/L	5
Chlorpyrifos	31/05/16	<0.1	ug/L	90
Diazinon	31/05/16	<0.1	ug/L	20
Dicamba	31/05/16	<0.2	ug/L	120
1,2-Dichlorobenzene	31/05/16	<0.5	ug/L	200
1,4-Dichlorobenzene	31/05/16	<0.5	ug/L	5
1,2-Dichloroethane	31/05/16	<0.5	ug/L	5
1,1-Dichloroethylene (vinylidene chloride)	31/05/16	<0.5	ug/L	14
Dichloromethane	31/05/16	<0.5	ug/L	50
2-4 Dichlorophenol	31/05/16	<0.3	ug/L	900
2,4-Dichlorophenoxy acetic acid (2,4-D)	31/05/16	<0.2	ug/L	100
Diclofop-methyl	31/05/16	<0.2	ug/L	9
Dimethoate	31/05/16	<0.1	ug/L	20
Diquat	31/05/16	<1.0	ug/L	70
Diuron	31/05/16	<1.0	ug/L	150
gamma-Chlordane	31/05/16	<0.1	ug/L	
Glyphosate	31/05/16	<5.0	ug/L	280
Malathion	31/05/16	<0.1	ug/L	190
MCPA	31/05/16	<0.2	ug/L	
Metolachlor	31/05/16	<0.1	ug/L	50
Metribuzin	31/05/16	<0.1	ug/L	80
Monochlorobenzene	31/05/16	<0.5	ug/L	80
o,p-DDT	31/05/16	<0.1	ug/L	
Oxychlordane	31/05/16	<0.1	ug/L	
p,p-DDD	31/05/16	<0.1	ug/L	
p,p-DDE	31/05/16	<0.1	ug/L	
p,p-DDT	31/05/16	<0.1	ug/L	
Paraquat	31/05/16	<1.0	ug/L	10
Pentachlorophenol	31/05/16	<0.5	ug/L	60
Phorate	31/05/16	<0.1	ug/L	2
Picloram	31/05/16	<0.2	ug/L	190
Polychlorinated Biphenyls (PCB)	31/05/16	<0.035	ug/L	3
Prometryne	31/05/16	<0.1	ug/L	1
Simazine	31/05/16	<0.1	ug/L	10

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
Terbufos	31/05/16	<0.2	ug/L	1
Tetrachloroethylene (perchloroethylene)	31/05/16	<0.5	ug/L	30
2,3,4,6-Tetrachlorophenol	31/05/16	<0.5	ug/L	100
Triallate	31/05/16	<0.1	ug/L	230
Trichloroethylene	31/05/16	<0.5	ug/L	5
2,4,6-Trichlorophenol	31/05/16	<0.5	ug/L	5
Trifluralin	31/05/16	<0.1	ug/L	45
Vinyl Chloride	31/05/16	<0.2	ug/L	2

Harriston Well #3

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
Alachlor	31/05/16	<0.1	ug/L	5
alpha-Chlordane	17/05/16	<0.1	ug/L	
Aroclor 1242	31/05/16	<0.02	ug/L	
Aroclor 1254	31/05/16	< 0.02	ug/L	
Aroclor 1260	31/05/16	<0.02	ug/L	
Atrazine	31/05/16	<0.1	ug/L	
Atrazine Desethyl	31/05/16	<0.1	ug/L	
Atrazine & Metabolites	31/05/16	<0.2	ug/L	5
Azinphos-methyl	31/05/16	<0.1	ug/L	20
Benzene	17/05/16	<0.5	ug/L	5
Benzo(a)pyrene	31/05/16	<0.01	ug/L	0.01
Bromoxynil	17/05/16	<0.2	ug/L	5
Carbaryl	31/05/16	<0.2	ug/L	90
Carbofuran	31/05/16	<0.2	ug/L	90
Carbon Tetrachloride	17/05/16	<0.5	ug/L	5
Chlorpyrifos	31/05/16	<0.1	ug/L	90
Diazinon	31/05/16	<0.1	ug/L	20
Dicamba	17/05/16	<0.2	ug/L	120
1,2-Dichlorobenzene	17/05/16	<0.5	ug/L	200
1,4-Dichlorobenzene	17/05/16	<0.5	ug/L	5
1,2-Dichloroethane	17/05/16	<0.5	ug/L	5
1,1-Dichloroethylene (vinylidene chloride)	17/05/16	<0.5	ug/L	14
Dichloromethane	17/05/16	<5.0	ug/L	50
2-4 Dichlorophenol	31/05/16	<0.3	ug/L	900
2,4-Dichlorophenoxy acetic acid (2,4-D)	17/05/16	<0.2	ug/L	100

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
Diclofop-methyl	31/05/16	<0.2	ug/L	9
Dimethoate	31/05/16	<0.1	ug/L	20
Diquat	17/05/16	<1.0	ug/L	70
Diuron	17/05/16	<1.0	ug/L	150
gamma-Chlordane	17/05/16	<0.1	ug/L	
Glyphosate	17/05/16	<5.0	ug/L	280
Malathion	31/05/16	<0.1	ug/L	190
MCPA	17/05/16	<0.2	ug/L	
Metolachlor	31/05/16	<0.1	ug/L	50
Metribuzin	31/05/16	<0.1	ug/L	80
Monochlorobenzene	17/05/16	<0.5	ug/L	80
o,p-DDT	17/05/16	<0.1	ug/L	
Oxychlordane	17/05/16	<0.1	ug/L	
p,p-DDD	17/05/16	<0.1	ug/L	
p,p-DDE	17/05/16	<0.1	ug/L	
p,p-DDT	17/05/16	<0.1	ug/L	
Paraquat	17/05/16	<1.0	ug/L	10
Pentachlorophenol	31/05/16	<0.5	ug/L	60
Phorate	31/05/16	<0.1	ug/L	2
Picloram	17/05/16	<0.2	ug/L	190
Polychlorinated Biphenyls (PCB)	31/05/16	<0.035	ug/L	3
Prometryne	31/05/16	<0.1	ug/L	1
Simazine	31/05/16	<0.1	ug/L	10
Terbufos	31/05/16	<0.2	ug/L	1
Tetrachloroethylene (perchloroethylene)	17/05/16	<0.5	ug/L	30
2,3,4,6-Tetrachlorophenol	31/05/16	<0.5	ug/L	100
Triallate	31/05/16	<0.1	ug/L	230
Trichloroethylene	17/05/16	<0.5	ug/L	5
2,4,6-Trichlorophenol	31/05/16	<0.5	ug/L	5
Trifluralin	31/05/16	<0.1	ug/L	45
Vinyl Chloride	17/05/16	<0.2	ug/L	2

Harriston Distribution System

Parameter	Sample Date	Result Value	Unit of Measure	ODWS Criteria
тнм	17/02/16	13.5	ug/L	100
	17/05/16	11.7		
	10/08/16	18.1		
	07/11/16	16.8		

List any Inorganic or Organic parameter(s) that exceeded half the standard prescribed in Schedule 2 of Ontario Drinking Water Quality Standards.

Parameter	Result Value	Unit of Measure	Date of Sample
N/A	N/A	N/A	N/A

(Only if DWS category is large municipal residential, small municipal residential, large municipal non residential, non municipal year round residential, large non municipal non residential)